本港台同步现场报码
嵌入式AI究竟是一个新理念还是一个旧噱头刘伯温
添加时间:2019-10-24
 

  在人工智能迅猛发展的当下,几乎每一家企业都在探索行业的切入点,试图在人工智能大潮中分一杯羹。

  而在追寻 AI 商业化的道路上,人们逐渐发现,要实现技术的落地,不仅需要性能优越的算法模型以及可靠的硬件支持,还需要把 AI 技术和硬件环境进行有机结合,再应用到具体的实际场景中,进而满足用户的需求。而「嵌入式 AI」就是当前最热门的 AI 商业化途径之一。

  「通过观察市场我们发现,在 AI 领域主要有两拨人。一方是高大上的算法团队,一方则是以深圳老板为代表的实体出货商。有趣的是这两拨人是完全不沟通的,就像一帮人看爱奇艺,百度文库下载器找文库猫。一帮人看快手一样。」Perceptln 公司联合创始人刘少山根据算法与硬件之间存在的壁垒,举了一个有意思的例子。

  Perceptln 于 2016 年成立于硅谷,旨在提供机器人整体软硬件解决方案。创始人刘少山先后就职于 LinkedIn、英特尔、微软研究院,曾担任百度无人车高级架构师,对于嵌入式 AI 有一些独到的见解。

  「我们做的就是把 AI 技术带给那些应用厂商,推动整个市场发展。」据刘少山介绍,Perceptln 已针对高、中、低端等不同场景的应用推出三条产品线,分别将 AI 技术嵌入到智能玩具、服务类机器人以及自动驾驶等应用中。

  事实上,嵌入式并非是一个新鲜或者「高大上」的概念。所谓嵌入式,就是指一种可被内置于设备或装置的专用计算机系统。通常来说,具有数字接口的设备都具有嵌入式系统,如手机、车载电脑、智能手表等等。而嵌入式 AI,则是一种让 AI 算法可以在终端设备上运行的技术概念。很简单,换句话说,它的作用就是能让音箱、手机、机器人等智能硬件在不联网的情况下实时完成环境感知、人机交互、决策控制等功能。

  而一位资深算法工程师告诉机器之能,通常来讲他把程序编完了扔给公司里的嵌入式工程师,后者再负责把它嵌入到板子里。其实传统做嵌入也是这个思路,两端都要考虑,俗称「两头堵」:「按照我的理解,那些专注做嵌入式 AI 的可能是在针对 AI 模型做一些优化或是板子的优化,让算法更高效地跑在板子上。」

  那么嵌入式 AI 到底能做到什么?与云端 AI 相比,更适合应用到哪些场景里?还有什么是它做不到的?我们来听听更多业内做这一行的专家们的意见:什么样的垂直场景更需要嵌入式 AI?众所周知,神经网络包括模型训练和推断两个过程。而一提训练,就必定会涉及海量的数据输入,计算规模也会根据场景复杂性的递增而变得愈加庞大。

  因此,受到计算资源的限制,嵌入式端很难实现模型训练的过程,也是我们下面要说的「几个挑战之一」。而在推断环节,云端推断和嵌入式推断,二者诉求不同,因此也在不同的应用场景能够发挥自己的优势:前者的好处是,能够承受高吞吐量并满足复杂计算对资源的要求,刘伯温111166,因此多用于深度学习模型和计算较复杂的情况;而后者,则更多的应用于对「实时处理」有更高要求的场景中。

  什么是「实时处理」?我们来举个最实际的例子。无人驾驶汽车需要实时监测周围环境,但是如果无人车突然进入隧道,或者进入某个连不了网的环境中呢?是的,驾驶场景复杂多变,并不能保证时刻都能有一个百分之百可用的网络。因此,嵌入式 AI 凭借其实时性优势及脱机运行的能力得以自动驾驶领域展现实力。

  国内自动驾驶卡车技术研发公司图森未来 COO 郝佳男就曾在接受机器之能采访时表示:「从理论上讲,在云端处理传感器信号并不可行,存在延迟和可用性问题。」因此,信号的本地处理也是整个自动驾驶领域的一大诉求,因为设备端采集到数据后上传到计算完成返回终端的过程会不可避免地带来一定的延时,驾驶的危险系数也随之提升。

  而中科创达副总裁孙力在前天举办的嵌入式人工智能技术论坛上也提到了这一问题:「自动驾驶汽车每秒钟可以产生 1G 的数据,必须及时的、迅速的在本地来处理决策,不可能移到云端。」除了无人驾驶,在智能家居方面,试想一下如果用户家中安装了一个监控摄像头,那么把数据传到云端很可能会增加个人隐私泄露的风险。而由于嵌入式 AI 是在本地处理数据,数据没有上云的过程,就可以保证用户的信息安全,免除不必要的麻烦。

  除了这些特定的应用场景,一些 AI 技术公司对嵌入式 AI 也有着广泛的需求。而近来因巨额融资引起广泛热议的 Face++就是其中的一员。「虽然我们主攻金融、安防以及手机智能这三个垂直领域。」公司 CTO 唐文斌向机器之能表示,「但是我们在手机端遇到了第一个问题。」他解释道。

  他们在手机端做实名认证及人脸解锁的时候发现,算法会不断「吃」计算力。也就是说,即便计算力不断增长,算法对计算力也总是处于「欲求不满」的状态。

  其次是在摄像机端。他谈到算法研发人员希望在做人脸识别的时候,可以让人脸在视频中的检测、抓拍环节在相机端实现。这样一来,就可以只传输有价值的信息,闽楠的物种研究202033.com。而非原始的大容量视频,能够有效减少传输带宽以及后端部署服务器的计算量及存储量,让系统的整体架构变得更加轻便。


香港挂牌彩图| 香港管家婆玄机彩图| 开奖直播| 323000.com| www.94486.com| 开奖现场| 香港曾道人中特网| 正版资料第二版| 118aaa论坛神童网| 本港台即时开奖结果| 美人鱼| 012890.com|